Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Adv Sci (Weinh) ; : e2310134, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634567

RESUMO

Intraperitoneal dissemination is the main method of epithelial ovarian cancer (EOC) metastasis, which is related to poor prognosis and a high recurrence rate. Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures that are implicated in the regulation of tumor development. In this study, hsa_circ_0001546 is downregulated in EOC primary and metastatic tissues vs. control tissues and this phenotype has a favorable effect on EOC OS and DFS. hsa_circ_0001546 can directly bind with 14-3-3 proteins to act as a chaperone molecule and has a limited positive effect on 14-3-3 protein stability. This complex recruits CAMK2D to induce the Ser324 phosphorylation of Tau proteins, changing the phosphorylation status of Tau bound to 14-3-3 and ultimately forming the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex. The existence of this complex stimulates the production of Tau aggregation, which then induces the accumulation of lipid peroxides (LPOs) and causes LPO-dependent ferroptosis. In vivo, treatment with ferrostatin-1 and TRx0237 rescued the inhibitory effect of hsa_circ_0001546 on EOC cell spreading. Therefore, based on this results, ferroptosis caused by Tau aggregation occurs in EOC cells, which is not only in Alzheimer's disease- or Parkinson's disease-related cells and this kind of ferroptosis driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex is LPO-dependent rather than GPX4-dependent is hypothesized.

2.
Apoptosis ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478171

RESUMO

Prostate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide. However, many areas in this pathway are still worth exploring. In this study, single-cell sequencing analysis was utilized to scrutinize significant genes in the androgen receptor (AR) pathway related to CRPC. Our analysis of single-cell sequencing combined with bulk-cell sequencing revealed a substantial downregulation of AR-regulated AFF3 in CRPC. Overexpression of AFF3 restricted the proliferation and migration of prostate cancer cells whilst also increasing their sensitivity towards enzalutamide, while knockdown of AFF3 had the opposite effect. To elucidate the mechanism of tumor inhibition by AFF3, we applied GSVA and GSEA to investigate the metabolic pathways related to AFF3 and revealed that AFF3 had an impact on fatty acids metabolism and ferroptosis through the regulation of ACSL4 protein expression. Based on correlation analysis and flow cytometry, we can speculate that AFF3 can impact the sensitivity of the CRPC cell lines to the ferroptosis inducer (RSL3) by regulating ACSL4. Therefore, our findings may provide new insights into the mechanisms of drug resistance in CRPC, and AFF3 may serve as a novel prognostic biomarker in prostate cancer.

3.
Cell Oncol (Dordr) ; 47(1): 37-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642916

RESUMO

Lung cancer, being the most widespread and lethal form of cancer globally, has a high incidence and mortality rate primarily attributed to challenges associated with early detection, extensive metastasis, and frequent recurrence. In the context of lung cancer development, noncoding RNA molecules have a crucial role in governing gene expression and protein synthesis. Specifically, tRNA-derived fragments (tRFs), a subset of noncoding RNAs, exert significant biological influences on cancer progression, encompassing transcription and translation processes as well as epigenetic regulation. This article primarily examines the mechanisms by which tRFs modulate gene expression and contribute to tumorigenesis in lung cancer. Furthermore, we provide a comprehensive overview of the current bioinformatics analysis of tRFs in lung cancer, with the objective of offering a systematic and efficient approach for studying the expression profiling, functional enrichment, and molecular mechanisms of tRFs in this disease. Finally, we discuss the clinical significance and potential avenues for future research on tRFs in lung cancer. This paper presents a comprehensive systematic review of the existing research findings on tRFs in lung cancer, aiming to offer improved biomarkers and drug targets for clinical management of lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Epigênese Genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA não Traduzido , Regulação Neoplásica da Expressão Gênica
4.
Langmuir ; 39(48): 17498-17512, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37983616

RESUMO

Safe, efficient, and green synthetic energetic combustion catalysts are of great importance for the application of ammonium perchlorate (AP) in solid propellants. In this study, a novel, simple, efficient, and green electrochemical method for synthesizing energetic combustion catalysts was designed and implemented to successfully synthesize Co(BODN)·9H2O (BODN = [2,2'-bi{1,3,4-oxadiazole}]-5,5'-dinitramide), a novel energetic combustion catalyst. The target products were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, optical microscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. Results reveal that Co(BODN)·9H2O crystallizes in the triclinic P1̅ space group and has a density of 1.836 g cm-3. The size of the Co(BODN)·9H2O crystal increases gradually with the increase in the reaction current and the prolongation of the reaction time, respectively. However, the change in reaction current and time does not affect the crystal form. In addition, with the increase in Co(BODN)·9H2O content, the peak temperature of high-temperature decomposition (HTD) and apparent activation energy of AP/Co(BODN)·9H2O gradually decrease, and the heat release during thermal decomposition gradually increases. The HTD peak temperature and apparent activation energy of AP/Co(BODN) 9H2O (10%) decrease by 97.9 °C and 94.2 kJ·mol-1, respectively, compared with those of pure AP, and the heat release during thermal decomposition increases by 1613 J·g-1. Furthermore, compared with those of the propellant containing pure AP, the burning rate and flame temperature of the propellant containing AP/Co(BODN)·9H2O (10%) increase by 8.15 mm s-1 and 458.44 °C, respectively. Real-time Fourier transform infrared spectroscopy reveals that CoO catalyzes the thermal decomposition of AP mainly by promoting electron transfer to accelerate the oxidation of NH3 and the conversion of N2O to NO. In brief, this work provides new insights into synthesizing energetic combustion catalysts. Moreover, Co(BODN)·9H2O synthesized through the electrochemical method exhibits considerable application prospects for improving the thermal and energy performance of AP and the combustion performance of propellants.

5.
Dalton Trans ; 52(46): 17324-17339, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37937609

RESUMO

A new core-shell structure AP/Cu-DABT/Cu(Pa)2 (10 wt% each) (AP = ammonium perchlorate, DABT = 3,3'-diamino-5,5'-bis(1H-1,2,4-triazole), Pa = palmitic acid) with two coating layers was synthesized through two self-assembly reactions to improve the thermal decomposition performance, safety performance and moisture absorption resistance of AP. The results show that the surface of AP particles is uniformly and densely covered by Cu-DABT and Cu(Pa)2 coatings successively. Compared with pure AP, the HTD (high-temperature decomposition) peak temperature and activation energy of the AP/Cu-DABT/Cu(Pa)2 (10 wt% each) composite material were reduced by 74.7 °C and 117.67 kJ mol-1, respectively, and the heat release increased by 1421.02 J g-1. In addition, the burning rate and maximum flame temperature of the propellant containing the AP/Cu-DABT/Cu(Pa)2 (10 wt% each) composite were increased by 8.7 mm s-1 and 815.8 °C, respectively, compared with the propellant containing pure AP. Moreover, compared with pure AP, the contact angle of the AP/Cu-DABT/Cu(Pa)2 (10 wt% each) composite with water increased by 89.15°, and the water content decreased by 0.38 wt%. The impact sensitivity and friction sensitivity of the composite material were reduced by 16.9 cm and 96%, respectively. Analysis shows that the Cu-DABT coating plays a major role in improving the thermal properties of the composite material, the burning rate and flame temperature of the propellant, while the Cu(Pa)2 coating plays a major role in improving the hygroscopic performance and safety performance of the composite material. The composite material has good thermal decomposition properties, anti-hygroscopic properties and safety properties, so the composite material is very promising as a potential additive for solid propellants.

6.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1697-1706, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867435

RESUMO

Hepatocellular carcinoma (HCC) is the leading fatal malignancy worldwide. The tumor microenvironment (TME) can affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the challenges faced in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral/genética , MicroRNAs/genética , Biomarcadores , RNA Longo não Codificante/genética , Hipóxia , Carcinogênese , Subunidade alfa do Fator 1 Induzível por Hipóxia , Regulação Neoplásica da Expressão Gênica
7.
Lab Chip ; 23(20): 4493-4503, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37753862

RESUMO

Integrating energetic materials with microelectromechanical systems (MEMS) to achieve miniaturized integrated smart energetic microchips has broad application prospects in miniaturized aerospace systems and civil explosive systems. In this work, MEMS compatible [Cu(BODN)·5H2O]n arrays and [Cu(BODN)·5H2O]n@nano-Al composite energetic films were successfully fabricated on copper substrates by the in situ reaction method and drop-coating method. Single crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analyses, and pulsed laser ignition were employed to characterize the prepared samples. The results show that [Cu(BODN)·5H2O]n arrays formed by the coordination reaction between the Cu(OH)2 template and the BODN ligand exhibit a porous supramolecular structure with excellent thermal and energy properties. Their morphology and composition on a copper substrate can be effectively regulated by adjusting the reaction time and solution concentration. In addition, adjustable energetic properties of [Cu(BODN)·5H2O]n@nano-Al composite films can be achieved after the encapsulation of nano-Al. Their heat release, flame height and ignition duration can reach as much as 1987.5 J g-1, 13.2 mm, and 5900 µs, respectively, indicating that [Cu(BODN)·5H2O]n@nano-Al can be used as an excellent pyrotechnic agent in MEMS ignition chips. Overall, this work provides a reference for the integration and application of energetic materials in MEMS systems.

9.
Oncol Lett ; 26(3): 400, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37600339

RESUMO

[This corrects the article DOI: 10.3892/ol.2018.8166.].

10.
Exp Ther Med ; 26(3): 432, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37602297

RESUMO

[This corrects the article DOI: 10.3892/etm.2015.2286.].

11.
Sci Rep ; 13(1): 10815, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402993

RESUMO

To understand variations in geochemistry, organic petrology, and chemical composition of crude oil and byproducts, an immature sample from the Cretaceous Qingshankou Formation in the Songliao Basin, China, was analyzed by anhydrous and hydrous pyrolysis (AHP/HP) at a wide range of temperatures ranging from 300 °C to 450 °C. The geochemical parameters: TOC, S2, HI, and Tmax obtained from Rock-Eval pyrolysis showed both a decrease and an increase as thermal maturity progressed under HP and AHP conditions. Gas chromatography (GC) analysis showed the presence of n-alkanes in the C14 to C36 range in both expelled and residual byproducts, a Delta-shaped configuration although many samples had a gradually reducing (tapering) trend toward the high range. Gas chromatography-mass spectrometry (GC-MS) analysis revealed both an increase and a decrease in biomarker and very small changes in aromatic compound variations with increasing temperature during pyrolysis. To be more specific, C29Ts biomarker increased with temperature for the expelled byproduct, while the opposite trend was observed for the residual one. Next, The Ts/Tm ratio initially increased and then decreased with temperature while the C29H/C30H ratio fluctuated for the expelled byproduct but increased for the residual. Moreover, the GI and C30 rearranged hopane to C30 hopane ratio remained unchanged whereas the C23 tricyclic terpane/C24 tetracyclic terpane ratio and the C23/C24 tricyclic terpane ratio showed varying trends with maturity alike the C19/C23 and C20/C23 tricyclic terpane. Ultimately, based on organic petrography observations, increasing the temperature resulted in higher bitumen reflectance (%Bro, r) and optical and structural alterations in the macerals. The findings of this study provide valuable insights for future exploration endeavors in the studied region. Moreover, they contribute to our understanding of the significant role of water in the generation and expulsion of petroleum and associated byproducts, thereby facilitating the development of updated models in this field.

12.
Exp Ther Med ; 26(1): 346, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37383369

RESUMO

Renal dysfunction is a common complication of sepsis. Early diagnosis and prompt treatment of sepsis with renal insufficiency are crucial for improving patient outcomes. Diagnostic markers can help identify patients at risk for sepsis and AKI, allowing for early intervention and potentially preventing the development of severe complications. The aim of the present study was to investigate the expression difference of urinary microRNAs (miRNAs/miRs) in elderly patients with sepsis and secondary renal insufficiency, and to evaluate their diagnostic value in these patients. In the present study, RNA was extracted from urine samples of elderly sepsis-related acute renal damage patients and the expression profiles of several miRNAs were analyzed. In order to evaluate the expression profile of several miRNAs, urine samples from elderly patients with acute renal damage brought on by sepsis were obtained. RNA extraction and sequencing were then performed on the samples. Furthermore, multiple bioinformatics methods were used to analyze miRNA profiles, including differential expression analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of different miRNA target genes, to further explore miRNAs that are suitable for utilization as biomarkers. A total of four miRNAs, including hsa-miR-31-5p, hsa-miR-151a-3p, hsa-miR-142-5p and hsa-miR-16-5p, were identified as potential biological markers and were further confirmed in sepsis using reverse transcription-quantitative PCR. The results of the present study demonstrated that the four urinary miRNAs were differentially expressed and may serve as specific markers for prediction of secondary acute kidney injury in elderly patients with sepsis.

13.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174715

RESUMO

Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer development through different pathways. Exosomes, as extracellular vesicles, play an important role in cellular communication and the regulation of the tissue microenvironment. Interestingly, the miR-183 cluster can be detected in exosomes and plays a functional regulatory role in tumor development. Here, the biogenesis and functions of the miR-183 cluster in highly prevalent cancers and their relationship with other non-coding RNAs are summarized. In addition, the miR-183 cluster in exosomes has also been discussed. Finally, we discuss the miR-183 cluster as a promising target for cancer therapy. This review is expected to provide a new direction for cancer treatment.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Comunicação Celular/genética , Microambiente Tumoral/genética
14.
Heliyon ; 9(4): e15155, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095919

RESUMO

Cancer is serious endangers human life. After a long period of research and accumulation, people's understanding of cancer and the corresponding treatment methods are constantly developing. p53 is an important tumor suppressor gene. With the more in-depth understanding of the structure and function of p53, the more importance of this tumor suppressor gene is realized in the process of inhibiting tumor formation. MicroRNAs (miRNAs) are important regulatory molecules with a length of about 22nucleotides (nt), which belong to non-coding RNA and play an important role in the occurrence and development of tumors. miR-34 is currently considered to be a master regulator of tumor suppression. The positive feedback regulatory network formed by p53 and miR-34 can inhibit the growth and metastasis of tumor cells and inhibit tumor stem cells. This review focuses on the latest progress of p53/miR-34 regulatory network, and discusses its application in tumor diagnosis and treatment.

15.
Cell Biol Int ; 47(1): 283-291, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36200534

RESUMO

DDX46, a member of DEAD-box (DDX) proteins, is associated with various cancers, while its involvement in the pathogenesis of breast cancer hasn't been reported so far. The study demonstrated the overexpression of DDX46 in human breast cancer cells and tissue samples, and correlated with high histological grade and lymph node metastasis. Downregulation of DDX46 in the breast cancer cell lines inhibited their proliferation and invasiveness in vitro. Furthermore, the growth of MDA-MB-231 xenografts was suppressed in nude mice by DDX46 knockingdown. Taken together, our findings suggest that DDX46 is an oncogenic factor in human breast cancer, and a potential therapeutic target.


Assuntos
Neoplasias da Mama , Proliferação de Células , RNA Helicases DEAD-box , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Camundongos Nus , Invasividade Neoplásica/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo
16.
ACS Appl Mater Interfaces ; 15(1): 1384-1391, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573849

RESUMO

Doping a catalyst can efficiently improve the hydrogen reaction kinetics of MgH2. However, the hydrogen desorption behaviors are complicated in different MgH2-catalyst systems. Here, a carbon-encapsulated nickel (Ni@C) core-shell catalyst is synthesized to improve the hydrogen storage properties of MgH2. The complicated hydrogen desorption mechanism of the MgH2-Ni@C composite is elucidated. The experimental and theoretical calculation results indicate a short-range nanoreaction effect on the hydrogen desorption behaviors of the MgH2-Ni@C composite. The Ni@C catalysts and the adjacent MgH2 form nanoreaction sites along with preferential hydrogen desorption. The new interface between the in situ formed Mg and residual MgH2 contributes to the subsequent hydrogen desorption. With the nanoreaction sites increased via adding more catalyst, the short-range nanoreaction effect is more prominent; as a comparison, the interface effect becomes weaker or even disappears. In addition, the core-shell structure catalyst shows ultrahigh structural stability and catalytic activity, even after 50 hydrogen absorption and desorption cycles. Hence, this study provides new insights into the complicated hydrogen desorption behaviors and comes up with the short-range nanoreaction effect in the MgH2-catalyst system.

17.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955652

RESUMO

Lung cancer is the leading cause of cancer death worldwide. miR-199a, which has two mature molecules: miR-199a-3p and miR-199a-5p, plays an important biological role in the genesis and development of tumors. We collected recent research results on lung cancer and miR-199a from Google Scholar and PubMed databases. The biological functions of miR-199a in lung cancer are reviewed in detail, and its potential roles in lung cancer diagnosis and treatment are discussed. With miR-199a as the core point and a divergence outward, the interplay between miR-199a and other ncRNAs is reviewed, and a regulatory network covering various cancers is depicted, which can help us to better understand the mechanism of cancer occurrence and provide a means for developing novel therapeutic strategies. In addition, the current methods of diagnosis and treatment of lung cancer are reviewed. Finally, a conclusion was drawn: miR-199a inhibits the development of lung cancer, especially by inhibiting the proliferation, infiltration, and migration of lung cancer cells, inhibiting tumor angiogenesis, increasing the apoptosis of lung cancer cells, and affecting the drug resistance of lung cancer cells. This review aims to provide new insights into lung cancer therapy and prevention.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , MicroRNAs/genética , RNA não Traduzido
18.
Prog Mol Biol Transl Sci ; 190(1): 189-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007999

RESUMO

Cancer has become a major disease that threatens human health because of its high morbidity and mortality. With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. NF-kb signal play an important role in carcinogenesis. Non-coding RNAs (ncRNAs) were found to a new player in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this chapter, we aim to summarize roles of EGFR, NF-κB and regulatory functions of non-coding RNAs in cancer treatment.


Assuntos
Neoplasias , RNA Longo não Codificante , Carcinogênese , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , RNA não Traduzido/genética
19.
Int J Biol Sci ; 18(10): 4187-4202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844793

RESUMO

Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Encéfalo/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 279-291, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538038

RESUMO

With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , RNA Longo não Codificante , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores ErbB , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...